参考之家教育排行 • 正文

世界上最难的数学题是什么,世界九大数学难题盘点

  说到世界上最难的问题,不仅仅是学生,很多成年人也认为数学不好学。特别是上了大学,高数的难度等级就往上提升,那么你知道世界上最难的数学题是什么吗?虽然有评选出了21世纪世界七大数学难题,但是参考之家的小编还是要给大家加两个进去,咱们盘点一下世界九大数学难题。

世界上最难的数学题

  1、NP完全问题

  2、霍奇猜想

  3、庞加莱猜想

  4、黎曼假设

  5、杨-米尔斯存在性和质量缺口

  6、纳卫尔-斯托可方程

  7、BSD猜想

  8、费尔马猜想

  9、哥德巴赫猜想

  1、NP完全问题

世界上最难的数学题是什么,世界九大数学难题盘点

  有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题,这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。

  人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题存在一个确定性算法,可以在多项式时间内直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。

  2、霍奇猜想

世界上最难的数学题是什么,世界九大数学难题盘点

  霍奇猜想是代数几何的一个重大的悬而未决的问题。它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想。用通俗的话说,就是“再好再复杂的一座宫殿,都可以由一堆积木垒成”。

  用文人的话说就是:任何一个形状的几何图形,不管它有多复杂,它都可以用一堆简单的几何图形拼成。在实际工作中,我们无法在二维平面的纸上绘画出来一种复杂的多维图形,霍奇猜想就是把复杂的拓扑图形分拆成为一个个构件,我们只要按照规则安装就可以理解设计者的思想。

  3、庞加莱猜想

世界上最难的数学题是什么,世界九大数学难题盘点

  庞加莱猜想是法国数学家庞加莱提出的一个猜想,即“任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。”简单的说,一个闭的三维流形就是一个有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点

  或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。庞加莱猜想是一个拓扑学中带有基本意义的命题,将有助于人类更好地研究三维空间,其带来的结果将会加深人们对流形性质的认识。

  4、黎曼假设

世界上最难的数学题是什么,世界九大数学难题盘点

  黎曼猜想(或称黎曼假设)是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家波恩哈德·黎曼于1859年提出。德国数学家戴维·希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼假设。

  虽然在知名度上,黎曼猜想不及费尔马猜想和哥德巴赫猜想,但它在数学上的重要性要远远超过后两者,是当今数学界最重要的数学难题,当今数学文献中已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。

  2018年9月,迈克尔·阿蒂亚声明证明黎曼猜想,于9月24日海德堡获奖者论坛上宣讲。9月24日,迈克尔·阿蒂亚贴出了他证明黎曼假设(猜想)的预印本。

  黎曼猜想与费马大定理已经成为广义相对论和量子力学融合的m理论几何拓扑载体。

  5、杨-米尔斯存在性和质量缺口

世界上最难的数学题是什么,世界九大数学难题盘点

  《杨米尔斯的存在性和质量缺口》是世界七大数学难题之一,问题起源于物理学中的杨·米尔斯理论。该问题的正式表述是:证明对任何紧的、单的规范群,四维欧几里得空间中的杨米尔斯方程组有一个预言存在质量缺口的解。该问题的解决将阐明物理学家尚未完全理解的自然界的基本方面。

  6、纳卫尔-斯托可方程

世界上最难的数学题是什么,世界九大数学难题盘点

  纳维-斯托克斯方程(Navier-Stokesequations),以克劳德-路易-纳维(Claude-LouisNavier)和乔治-盖伯利尔-斯托克斯命名,是一组描述象液体和空气这样的流体物质的方程,简称N-S方程,是世界七大数学难题之一。因1821年由C.-L.-M.-H.纳维建立和1845年由G.G.斯托克斯改进而得名。

  7、BSD猜想

世界上最难的数学题是什么,世界九大数学难题盘点

  BSD猜想,全称贝赫和斯维纳通-戴尔猜想(Birch and Swinnerton-Dyer 猜想),属于世界七大数学难题之一。它描述了阿贝尔簇的算术性质与解析性质之间的联系。

  给定一个整体域上的阿贝尔簇,猜想它的莫代尔群的秩等于它的L函数在1处的零点阶数,且它的L函数在1处的泰勒展开的首项系数与莫代尔群的有限部分大小、自由部分体积、所有素位的周期以及沙群有精确的等式关系。

  前半部分通常称为弱BSD猜想。BSD猜想是分圆域的类数公式的推广。格罗斯提出了一个细化的BSD猜想。布洛克和加藤提出了更一般的对于motif的Bloch-Kato猜想。

  8、费尔马猜想

世界上最难的数学题是什么,世界九大数学难题盘点

  费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。

  他断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。

  德国人沃尔夫斯凯尔曾宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。

  费马大定理被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年,英国数学家安德鲁·怀尔斯宣布自己证明了费马大定理。

  费马大定理与黎曼猜想已经成为广义相对论和量子力学融合的m理论几何拓扑载体。

  9、哥德巴赫猜想

世界上最难的数学题是什么,世界九大数学难题盘点

  哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。(n>5:当n为偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的和;当n为奇数,n=3+(n-3),n-3也是偶数,可以分解为两个质数的和)欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题“任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和”记作“a+b”。1966年陈景润证明了“1+2”成立,即“任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和”。

  今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。

  从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。2013年5月,巴黎高等师范学院研究员哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。

推荐阅读:

历史上十大最伟大的数学家排名,牛顿仅排第七

盘点史上最多人做错的8道小学数学题,附答案

2016考研数学:五大答题技巧让你考场轻松应对

成人高考考试技巧,分享数学最好的答题顺序

上一页 1 下一页 共1 条DevPager V1.0 Beta ! By 维诺工作室技术团队 CopyRight 版权所有 (C) WwW.Wy28.CoM 2008
小编推荐
猜你喜欢
网友热搜
上一篇:最经典穿越小说排行榜:这些穿越小说不看很可惜
下一篇:艾滋病十种自我检查,艾滋病都有什么症状
2011-2016 © 参考之家™ ckdzb.com All Rights Reserved !